
Algebraic curves

Solutions sheet 12

June 6, 2024

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. We recall the setting of the Cayley-Bacharach theorem: F1, F2 ⊆ P2
k are two plane projective cubics

intersecting cubics intersecting in 9 pairwise distinct points Ai ∈ P2
k, 1 ≤ i ≤ 9 and G is another cubic containing

Ai, 1 ≤ i ≤ 8. Show that no 6 points among {Ai, 1 ≤ i ≤ 8} lie on a quadric, unless G is a linear combination of

F1, F2.

Solution 1. F1, F2 cubics. F1 ∩ F2 = {A1, . . . , A9}. WLOG assume A1, . . . , A6 ∈ Q quadric. Then A7, A8 /∈ Q

and define a line L. Consider B ∈ Q \ {A1, . . . , A6}, C ∈ P2 \Q∪L and H = αF1 + βF2 + γG such that B,C ∈ H.

If H = 0, γ ̸= 0. Hence G is a linear combination of F1 and F2.

IfH ̸= 0, H vanishes on A1, . . . , A6, B hence Q|H. Then H
Q vanishes on A7, A8 since F1∩Q = F2∩Q = {A1, . . . , A6}.

Hence H = Q× L and C /∈ H which is a contradiction.

Exercise 2. Let A1, A2, A3, B1, B2, B3 be pairwise distinct points on an irreducible plane projective quadricQ ⊆ P2
k.

For (i, j) ∈ {(1, 2), (2, 3), (3, 1)}, denote by Cij the intersection point of lines AiBj and AjBi (show that these lines

intersect in exactly one point). Show that C12, C23, C31 are collinear. This result is known as Pascal’s theorem.

Solution 2. Define the following cubics :

• F1 := A1B2 ·A2B3 ·A3B1

• F2 := A2B1 ·A3B2 ·A1B3

• G := c12c31 ×Q

F1 and F2 intersect in A1, A2, A3, B1, B2, B3, c12, c31, c23. G contains the 8 first points of this list. By Cayley-

Bacharach, c23 ∈ G. But c23 /∈ Q otherwise ♯Q∩F1 > 6 and Q | F1 which cannot be the case since Q is irreducible.

Hence c23 ∈ c12c31.

Exercise 3. Let (E,O) be an elliptic curve.

1. Show that the addition defined in class has neutral element O and that any point P ∈ E has a (unique)

inverse −P (you may assume associativity of + to prove uniqueness of the inverse).

2. Show that + is commutative.
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If we further assume that + is associative, (E,+, O) is an abelian group. Consider O ̸= O′ ∈ E and Q = φ(O,O′).

We define α : E → E by α(P ) = φ(Q,P ).

3. Show that for P1, P2 ∈ (E,+, O), P1 + P2 + φ(P1, P2) = φ(O,O).

4. Show that α : (E,+, O) → (E,+, O′) is a group isomorphism.

Therefore, the group structure on E does not depend on the choice of O.

Solution 3.

1. Neutral. Let L := Oϕ(O,A). Then E.L = O +A+ ϕ(O,A). Hence ϕ(O,ϕ(O,A)) = A.

Inverse. −A := ϕ(A, ϕ(O,O)). Indeed, let B = ϕ(A, ϕ(O,O)). ϕ(A,B) = ϕ(O,O).

2. Commutativity. ϕ(A,B) = ϕ(B,A).

3. Let P,Q ∈ E. Then P + Q + ϕ(P,Q) = ϕ(O,ϕ(P + Q,ϕ(P,Q))) = ϕ(O,O) because ϕ(P + Q,ϕ(P,Q)) =

ϕ(ϕ(P,Q), ϕ(O,ϕ(P,Q))) = O.

4. α(P1 +P2) = O′ −P1 −P2 and α(P1) +
′ α(P2) = ϕ(O′, ϕ(α(P1), α(P2)) = ϕ(O,O)−O′ − (ϕ(O,O)−α(P1)−

α(P2)) = α(P1) + α(P2)−O′ = O′ − P1 − P2.

Exercise 4. Let E,O be an elliptic curve. We say that an element x in an abelian group (G,+) is p-torsion (p ∈ Z)
if p · x = x+ . . .+ x︸ ︷︷ ︸

p times

= 0.

A simple point P ∈ E with tangent line L is called a flex if I(P,E ∩ L) > 2. We admit that, if char(k) = 0, any

nonsingular cubic has 9 distinct flexes (see Fulton, Problem 5.23). Suppose char(k) = 0 and O is a flex.

1. Show that flexes are exactly 3-torsion points of E and that they form a subgroup isomorphic to Z/3Z×Z/3Z.

2. Let P ∈ E. How many lines through P are tangent to E at some point P ̸= Q ∈ E? (Hint: show that

P + 2Q = O and use exercise 5.)

Solution 4.

1. If P is a flex, the tangent of E at P intersects P only in P , hence ϕ(P, P ) = P . 2P = ϕ(O,O)− P = −P (O

is a flex). Hence 3P = O.

Conversely, if 3P = O, ϕ(P, P ) = −2P = P hence P is a flex.

We admit that E has 9 distinct ordinary flexes. Since all flexes are 3−torsion, their group structure is

Z/3Z× Z/3Z.

2. Suppose the tangent to Q goes through P (P ̸= Q). Then P + 2Q = O. Since 2−torsion points form a

subgroup isomorphic to Z/2Z×Z/2Z and P 7→ 2P is surjective (ex 5), there are 4 Q’s such that P +2Q = O.

P is a flex iff P is one of them, so the number of Q’s such that the tangent at Q goes through P and P ̸= Q

is 3 if P is a flex and 4 otherwise.

Exercise 5. Let (E,O) be an elliptic curve. Suppose char(k) = 0 and O is a flex (for the definition of flex, see

exercise 4).
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1. Show that P ∈ E is 2-torsion if, and only if, the tangent to E at P passes through O. (See exercise 4 for the

definition of torsion points.)

We may assume that E = Y 2Z −X(X − Z)(X − λZ) and O = [0 : 1 : 0] ∈ E, where λ ̸= 0, 1 (see Fulton, Problem

5.24).

2. Find 2-torsion points of E. Draw a real picture. Show that 2-torsion points of E form a subgroup isomorphic

to Z/2Z× Z/2Z.

3. Show that the endomorphism P 7→ 2P of E is surjective. (Hint: if 2P ̸= O, find an explicit expression for the

coordinates of 2P depending on coordinates of P .)

Solution 5.

1. P is 2−torsion ⇐⇒ 2P = 2P +O = O ⇐⇒ ϕ(P, P ) = O.

E \O is contained in the affine chart z ̸= 0. A line in the (x, y)−plane passes through [0 : 1 : 0] iff it is vertical.

Tangent to E : y2 − x(x− 1)(x− λ) = y2 − P(x). At P , L : −P ′(xP )(x− xP ) + 2yP (y − yP ) = 0.

L is vertical ⇐⇒ yP = 0 = P(xP ) ⇐⇒ xP ∈ {0, 1, λ}, yP = 0 ⇐⇒ P is 2−torsion. There are 4 2−torsion

points hence they form a group isomorphic to (Z/2Z)2.

2. If P is not 2−torsion, yP ̸= 0, L has equation y − yP = ν(x− xP ), λ = P′(xP )
2yP

. Adding that y2 = P(x), get

2yP (y − yP ) + (y − yP )
2 = P ′(xP )(x− xP ) +

1

2
P ′′(xP )(x− xP )

2 + (x− xP )
3

Hence if x ̸= xP , ν
2 = 3xP − (λ+ 1) + x− xP and x2P = ν2 + λ+ 1− 2xP (rational fraction of degree 1 in

P hence surjective in k alg closed). y is determined up to sign by x and y−P = −yP since the line through

(xP , yP ), (xP ,−yP ) is vertical for non 2−torsion points. We deduce from this that P 7→ 2P is surjective.
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