Algebraic curves Solutions sheet 12

June 6, 2024

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. We recall the setting of the Cayley-Bacharach theorem: $F_1, F_2 \subseteq \mathbb{P}^2_k$ are two plane projective cubics intersecting cubics intersecting in 9 pairwise distinct points $A_i \in \mathbb{P}^2_k$, $1 \le i \le 9$ and G is another cubic containing A_i , $1 \le i \le 8$. Show that no 6 points among $\{A_i, 1 \le i \le 8\}$ lie on a quadric, unless G is a linear combination of F_1, F_2 .

Solution 1. F_1 , F_2 cubics. $F_1 \cap F_2 = \{A_1, \ldots, A_9\}$. WLOG assume $A_1, \ldots, A_6 \in Q$ quadric. Then $A_7, A_8 \notin Q$ and define a line L. Consider $B \in Q \setminus \{A_1, \ldots, A_6\}$, $C \in \mathbb{P}^2 \setminus Q \cup L$ and $H = \alpha F_1 + \beta F_2 + \gamma G$ such that $B, C \in H$. If H = 0, $\gamma \neq 0$. Hence G is a linear combination of F_1 and F_2 .

If $H \neq 0$, H vanishes on A_1, \ldots, A_6 , B hence Q|H. Then $\frac{H}{Q}$ vanishes on A_7, A_8 since $F_1 \cap Q = F_2 \cap Q = \{A_1, \ldots, A_6\}$. Hence $H = Q \times L$ and $C \notin H$ which is a contradiction.

Exercise 2. Let $A_1, A_2, A_3, B_1, B_2, B_3$ be pairwise distinct points on an irreducible plane projective quadric $Q \subseteq \mathbb{P}^2_k$. For $(i, j) \in \{(1, 2), (2, 3), (3, 1)\}$, denote by C_{ij} the intersection point of lines $\overline{A_i B_j}$ and $\overline{A_j B_i}$ (show that these lines intersect in exactly one point). Show that C_{12}, C_{23}, C_{31} are collinear. This result is known as Pascal's theorem.

Solution 2. Define the following cubics :

- $F_1 := \overline{A_1 B_2} \cdot \overline{A_2 B_3} \cdot \overline{A_3 B_1}$
- $F_2 := \overline{A_2B_1} \cdot \overline{A_3B_2} \cdot \overline{A_1B_3}$
- $G := \overline{c_{12}c_{31}} \times Q$

 F_1 and F_2 intersect in $A_1, A_2, A_3, B_1, B_2, B_3, c_{12}, c_{23}$. G contains the 8 first points of this list. By Cayley-Bacharach, $c_{23} \in G$. But $c_{23} \notin Q$ otherwise $\sharp Q \cap F_1 > 6$ and $Q \mid F_1$ which cannot be the case since Q is irreducible. Hence $c_{23} \in \overline{c_{12}c_{31}}$.

Exercise 3. Let (E, O) be an elliptic curve.

- 1. Show that the addition defined in class has neutral element O and that any point $P \in E$ has a (unique) inverse -P (you may assume associativity of + to prove uniqueness of the inverse).
- 2. Show that + is commutative.

If we further assume that + is associative, (E, +, O) is an abelian group. Consider $O \neq O' \in E$ and $Q = \varphi(O, O')$. We define $\alpha : E \to E$ by $\alpha(P) = \varphi(Q, P)$.

- 3. Show that for $P_1, P_2 \in (E, +, O), P_1 + P_2 + \varphi(P_1, P_2) = \varphi(O, O).$
- 4. Show that $\alpha:(E,+,O)\to(E,+,O')$ is a group isomorphism.

Therefore, the group structure on E does not depend on the choice of O.

Solution 3.

- 1. Neutral. Let $L := \overline{O\phi(O, A)}$. Then $E.L = O + A + \phi(O, A)$. Hence $\phi(O, \phi(O, A)) = A$. Inverse. $-A := \phi(A, \phi(O, O))$. Indeed, let $B = \phi(A, \phi(O, O))$. $\phi(A, B) = \phi(O, O)$.
- 2. Commutativity. $\phi(A, B) = \phi(B, A)$.
- 3. Let $P, Q \in E$. Then $P + Q + \phi(P, Q) = \phi(O, \phi(P + Q, \phi(P, Q))) = \phi(O, O)$ because $\phi(P + Q, \phi(P, Q)) = \phi(\phi(P, Q), \phi(O, \phi(P, Q))) = O$.
- 4. $\alpha(P_1 + P_2) = O' P_1 P_2$ and $\alpha(P_1) + \alpha(P_2) = \phi(O', \phi(\alpha(P_1), \alpha(P_2))) = \phi(O, O) O' (\phi(O, O) \alpha(P_1) \alpha(P_2)) = \alpha(P_1) + \alpha(P_2) O' = O' P_1 P_2$.

Exercise 4. Let E, O be an elliptic curve. We say that an element x in an abelian group (G, +) is p-torsion $(p \in \mathbb{Z})$ if $p \cdot x = \underbrace{x + \ldots + x} = 0$.

A simple point $P \in E$ with tangent line L is called a flex if $I(P, E \cap L) > 2$. We admit that, if char(k) = 0, any nonsingular cubic has 9 distinct flexes (see Fulton, Problem 5.23). Suppose char(k) = 0 and O is a flex.

- 1. Show that flexes are exactly 3-torsion points of E and that they form a subgroup isomorphic to $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
- 2. Let $P \in E$. How many lines through P are tangent to E at some point $P \neq Q \in E$? (Hint: show that P + 2Q = O and use exercise 5.)

Solution 4.

1. If P is a flex, the tangent of E at P intersects P only in P, hence $\phi(P, P) = P$. $2P = \phi(O, O) - P = -P$ (O is a flex). Hence 3P = O.

Conversely, if 3P = O, $\phi(P, P) = -2P = P$ hence P is a flex.

We admit that E has 9 distinct ordinary flexes. Since all flexes are 3-torsion, their group structure is $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

2. Suppose the tangent to Q goes through P ($P \neq Q$). Then P + 2Q = O. Since 2-torsion points form a subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and $P \mapsto 2P$ is surjective (ex 5), there are 4 Q's such that P + 2Q = O. P is a flex iff P is one of them, so the number of Q's such that the tangent at Q goes through P and $P \neq Q$ is 3 if P is a flex and 4 otherwise.

Exercise 5. Let (E, O) be an elliptic curve. Suppose char(k) = 0 and O is a flex (for the definition of flex, see exercise 4).

1. Show that $P \in E$ is 2-torsion if, and only if, the tangent to E at P passes through O. (See exercise 4 for the definition of torsion points.)

We may assume that $E = Y^2Z - X(X - Z)(X - \lambda Z)$ and $O = [0:1:0] \in E$, where $\lambda \neq 0, 1$ (see Fulton, Problem 5.24).

- 2. Find 2-torsion points of E. Draw a real picture. Show that 2-torsion points of E form a subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 3. Show that the endomorphism $P \mapsto 2P$ of E is surjective. (Hint: if $2P \neq O$, find an explicit expression for the coordinates of 2P depending on coordinates of P.)

Solution 5.

1. P is 2-torsion \iff $2P = 2P + O = O \iff \phi(P, P) = O$.

 $E \setminus O$ is contained in the affine chart $z \neq 0$. A line in the (x,y)-plane passes through [0:1:0] iff it is vertical. Tangent to $E: y^2 - x(x-1)(x-\lambda) = y^2 - \mathcal{P}(x)$. At $P, L: -\mathcal{P}'(x_P)(x-x_P) + 2y_P(y-y_P) = 0$.

L is vertical $\iff y_P = 0 = \mathcal{P}(x_P) \iff x_P \in \{0, 1, \lambda\}, y_P = 0 \iff P \text{ is } 2\text{-torsion.}$ There are 4 2-torsion points hence they form a group isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$.

2. If P is not 2-torsion, $y_P \neq 0$, L has equation $y - y_P = \nu(x - x_P)$, $\lambda = \frac{\mathcal{P}'(x_P)}{2y_P}$. Adding that $y^2 = \mathcal{P}(x)$, get

$$2y_P(y - y_P) + (y - y_P)^2 = \mathcal{P}'(x_P)(x - x_P) + \frac{1}{2}\mathcal{P}''(x_P)(x - x_P)^2 + (x - x_P)^3$$

Hence if $x \neq x_P$, $\nu^2 = 3x_P - (\lambda + 1) + x - x_P$ and $x_{2P} = \nu^2 + \lambda + 1 - 2x_P$ (rational fraction of degree 1 in P hence surjective in k alg closed). y is determined up to sign by x and $y_{-P} = -y_P$ since the line through $(x_P, y_P), (x_P, -y_P)$ is vertical for non 2-torsion points. We deduce from this that $P \mapsto 2P$ is surjective.