Algebraic curves

Solutions sheet 12

June 6, 2024

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. We recall the setting of the Cayley-Bacharach theorem: Fy, Fy C Pi are two plane projective cubics
intersecting cubics intersecting in 9 pairwise distinct points A; € IP’%, 1 <i <9 and G is another cubic containing
A;, 1 < i< 8. Show that no 6 points among {A4;, 1 <1i < 8} lie on a quadric, unless G is a linear combination of
Fy, Fs.

Solution 1. Fj, F5 cubics. Fy N Fy = {Ay,...,Ag}. WLOG assume A;,...,Ag € Q quadric. Then A7, Ag ¢ Q
and define a line L. Consider B € Q\ {41,...,4¢}, C € P2\ QUL and H = aF; + BF + G such that B,C € H.
If H=0, v# 0. Hence G is a linear combination of F; and F5.

If H # 0, H vanishes on Ay, ..., Ag, B hence Q|H. Then g vanishes on A7, Ag since F1NQ = FoNQ = {A41,..., As}.
Hence H =@ x L and C ¢ H which is a contradiction.

Exercise 2. Let Ay, As, A3, B, B2, Bs be pairwise distinct points on an irreducible plane projective quadric @ C P2.
For (i,7) € {(1,2), (2,3), (3,1)}, denote by C;; the intersection point of lines A; B; and A;B; (show that these lines

intersect in exactly one point). Show that Ca,Cas, C31 are collinear. This result is known as Pascal’s theorem.

Solution 2. Define the following cubics :

[ ] 1 = AlBQ . AQBg . AgBl

[ ] F2 = AgBl . A3Bg . A1B3
o G := C12€31 X Q

Fy and F intersect in Ay, As, Az, B, Ba, B3, c12,¢31, co3. G contains the 8 first points of this list. By Cayley-
Bacharach, ca5 € G. But ca3 ¢ Q otherwise §QNF; > 6 and @ | F; which cannot be the case since @ is irreducible.

Hence co3 € ¢12¢371.
Exercise 3. Let (E,O) be an elliptic curve.

1. Show that the addition defined in class has neutral element O and that any point P € E has a (unique)

inverse —P (you may assume associativity of 4+ to prove uniqueness of the inverse).

2. Show that + is commutative.



If we further assume that + is associative, (E, +,O) is an abelian group. Counsider O # O’ € E and Q = ¢(0,0").
We define o : E — E by o(P) = ¢(Q, P).

3. Show that for P, P, € (E,+,0), Py + Po + ¢(P1, P2) = ¢(0, 0).
4. Show that a: (E,+,0) — (E,+,0’) is a group isomorphism.
Therefore, the group structure on E does not depend on the choice of O.
Solution 3.
1. Neutral. Let L := O¢(O, A). Then E.L = O + A+ $(0, A). Hence ¢(0,$(0, A)) = A.
Inverse. —A := ¢(A, $(0,0)). Indeed, let B = ¢(A, $(0,0)). ¢(A, B) = (0, 0).
2. Commutativity. ¢(A, B) = ¢(B, A).

3. Let P,Q € E. Then P+ Q + ¢(P,Q) = ¢(0,¢(P + Q, 6(P,Q))) = (0, 0) because ¢(P + Q, $(P,Q)) =
P(o(P,Q), (0, 6(P,Q))) = O.

4. a(Pr+ P) =0"— Py — Py and a(P) +' a(P) = (O, dp(a(Py),a(P)) = ¢(0,0) — O — (¢(0,0) — a(Py) —
Oé(Pg)) = a(Pl) + a(PQ) —-0'=0"-P - P,.

Exercise 4. Let E, O be an elliptic curve. We say that an element z in an abelian group (G, +) is p-torsion (p € Z)
ifp-e=x+...+2=0.
———

p times

A simple point P € E with tangent line L is called a flex if I(P,E N L) > 2. We admit that, if char(k) = 0, any

nonsingular cubic has 9 distinct flexes (see Fulton, Problem 5.23). Suppose char(k) =0 and O is a flex.
1. Show that flexes are exactly 3-torsion points of E and that they form a subgroup isomorphic to Z/3Z x Z/3Z.

2. Let P € E. How many lines through P are tangent to E at some point P # @Q € E? (Hint: show that
P +2@Q = O and use exercise 5.)

Solution 4.
1. If P is a flex, the tangent of E at P intersects P only in P, hence ¢(P, P) = P. 2P = ¢(0,0) — P =—-P (O
is a flex). Hence 3P = O.
Conversely, if 3P = O, ¢(P, P) = —2P = P hence P is a flex.
We admit that E has 9 distinct ordinary flexes. Since all flexes are 3—torsion, their group structure is

Z/37 x 7./31.

2. Suppose the tangent to @ goes through P (P # Q). Then P 4 2Q = O. Since 2—torsion points form a
subgroup isomorphic to Z/27Z x Z/27Z and P — 2P is surjective (ex 5), there are 4 Q’s such that P+2Q = O.
P is a flex iff P is one of them, so the number of ’s such that the tangent at @ goes through P and P # Q

is 3 if P is a flex and 4 otherwise.

Exercise 5. Let (E,O) be an elliptic curve. Suppose char(k) = 0 and O is a flex (for the definition of flex, see

exercise 4).



1.

Show that P € E is 2-torsion if, and only if, the tangent to E at P passes through O. (See exercise 4 for the

definition of torsion points.)

We may assume that E =Y?Z — X(X — Z)(X —AZ) and O = [0:1: 0] € E, where X # 0,1 (see Fulton, Problem

5.24).

2.

Find 2-torsion points of E. Draw a real picture. Show that 2-torsion points of F form a subgroup isomorphic
to Z/27 x Z./27.

Show that the endomorphism P +— 2P of E is surjective. (Hint: if 2P # O, find an explicit expression for the

coordinates of 2P depending on coordinates of P.)

Solution 5.

1.

P is 2—torsion <= 2P =2P+0 =0 < ¢(P,P)=0.
E\ O is contained in the affine chart z # 0. A line in the (x, y)—plane passes through [0 : 1 : 0] iff it is vertical.
Tangent to E : y? —x(x —1)(x — \) =y?> — P(x). At P, L : —P'(xp)(x —xp) + 2yp(y — yp) = 0.

L is vertical < yp =0=P(xp) <= zp € {0,1,A\}, yp =0 <= P is 2—torsion. There are 4 2—torsion
points hence they form a group isomorphic to (Z/27)2.

P'(zp)

. If P is not 2—torsion, yp # 0, L has equation y — yp = v(z —zp), A = . Adding that y* = P(z), get

2yp(y —yp) + (y —yp)’> = P'(xp)(x — zp) + %P”(wp)(x —ap)? + (x —xp)?

Hence if # # 2p, v? =3xp — (A + 1) + 2 — 2p and z9p = 2 + A + 1 — 22p (rational fraction of degree 1 in
P hence surjective in k alg closed). y is determined up to sign by = and y_p = —yp since the line through

(zp,yp), (xp, —yp) is vertical for non 2—torsion points. We deduce from this that P — 2P is surjective.



